
So�ware Development (cs2500)

Lecture 35: Living on the Edge

M.R.C. van Dongen

January 19, 2011

Contents
1 Outline 1

2 �e Beat Box 2

3 �e Basics 2

4 �e Sequencer 3

5 Exceptions 3
5.1 Finding Risky Methods . 4

5.2 Catching Exceptions . 5

5.3 Exception Objects . 5

5.4 Creating New Exceptions . 5

5.5 Handling the Error . 5

5.6 �rowing Exceptions . 7

5.7 Ignoring Exceptions . 8

5.8 Finally . 8

6 For Friday 9

1 Outline
�is lecture is about exceptions. It lays the foundations for a music application. We shall start by looking

at the application. Implementing the application requires that we know about exceptions. �e remainder

of the lecture explains exceptions. Next lecture we shall implement a bit of the music app. We shall �nish

it in our gui lectures.

1

Figure 1: A Java beat box application.

2 �e Beat Box
In this lecture we’ll lay the foundations for a Java music application. We’ll �nish the application when

we’re studying Guis (Graphical User Interfaces). Figure 1 depicts the application: a beatbox.

You put checkmarks in the boxes for each of the 16 “beats”. For example on Beat 1 you click ‘Bass
Drum’, on Beat 3 you click ‘Closed Hi-Hat’, and so on. When you click on the ‘Start’ button the di�erent

sounds are played at the relevant beats, which are repeated a�er every cycle of 16 beats. �ere are also

buttons to speed up or slow down the tempo.

3 �e Basics
�is section studies the basic ingredients for the sound part of our application. At the heart of the

application is the JavaSound api (Application Programming Interface).

JavaSound is a collection of classes and interfaces. �ey are part of the J2SE class library. �e library

is split into MIDI and Sampled. As the name suggests it’s for sound applications.

We shall only be using MIDI. MIDI is an acronym for Musical Instrument Digital Interface. It’s really

a speci�cation on how to play music: play high C, hit it hard, and hold it for 2 beats. �e MIDI �le

is read by a MIDI-capable instrument: a keyboard, a computer, …. �e instrument plays the music by

sending it to the speaker. For our beatbox we’ll use the Java built-in so�ware instrument which is called

synthesizer.

2

4 �e Sequencer
Our main object for creating sounds is the Sequencer. �e Sequencer is capable of creating and playing

back sounds. �e following is a �rst stab at creating the Sequencer.

import javax.sound.midi.*;

public class MusicTest {
public void play() {

Sequencer sythesizer = MidiSystem.getSequencer();
System.out.println("Created Sequencer!");

}

public static void main(String[] args) {
MusicTest player = new MusicTest();
player.play();

}
}

Don’t Try this at Home

However, when we compile this simple application we get a compile-time error.

$ javac MusicTest
MusicTest.java:5: unreported exception javax.sound.midi.MidiUnavailableException; must be caught or declared to be thrown

Sequencer sythesizer = MidiSystem.getSequencer();
^

1 error
$

Unix Session

Java refused to turn the Java program into a .class �le. �e reason for doing this is that the program

has an ‘unreported exception’ which ‘must be caught or declared’.

5 Exceptions
In the previous section we got an error stating that our program has an ‘unreported exception’ which

‘must be caught or declared’. �e reason for this error is that the MidiSystem class, which returns the

Sequencer, does ‘risky things’, which may go wrong. Before we can resolve the problem in the program

that creates our Sequencer we have to learn a bit about risky things.

Let’s say you call a method in a class you didn’t write.

Sequencer sequencer = MidiSystem.getSequencer(); Java

As it turns out the method MidiSystem.getSequencer does something risky, which might not work

at runtime.

3

Figure 2: A method throws an exception.

public static Sequencer getSequencer() {
if (serverDown) {

System.explode();
} else {

return 〈A Sequencer〉;
}

}

Java

You need to know the method you’re calling is risky. For example, knowing that the method MidiSys-
tem.getSequencer() is risky allows us to prevent things from going wrong when an exceptional event

occurs. You do this by writing code that catches and exception. �e result is a safe and robust application.

5.1 Finding RiskyMethods
In Java you can recognise risky methods because they throw exceptions. (In Java and the Java api you’re

look for a throws clause.) Figure 2 depicts an example.

Methods use exceptions to inform the calling code if something bad happens. It is the caller’s responsi-

bility to catch the exception or ignore it. Catching the exception means dealing with it. �is should be

done in a robust way. Ignoring the exception means informing the compiler you ignore the exception.

�is is done by declaring the exception. Ignoring an exception doesn’t solve it. However, avoiding

exceptions doesn’t resolve them which is why Java insists that all exceptions should eventually caught.

4

5.2 Catching Exceptions
In Java you catch an exception by writing a try-catch statement.

• In the try block you call the risky method.

• In the catch block you deal with the exceptions. As we shall see in a moment, you may have several

catch blocks.

�e following demonstrates how this works.

public void play() {
try {

Sequencer sequencer = MidiSystem.getSequencer();
…

} catch(MidiUnavalableException exception) {
System.err.println("MusicTest: play failed!");
…

}
}

Java

In the try block we write the risky call to MidiSystem.getSequencer(). We know from the api

documentation that the method may throw a MidiUnavalableException exception. �e catch block

deals with this exception. Since this is the only exception which is thrown, the resulting code is robust.

When the try block is executed at runtime, the catch block will be ignored if no exception occurs.

However, if a MidiUnavalableException exception occurs then the catch block will deal with it. �e

exception is formally assigned to the variable exception and the statements in the body of the catch
block are carried out. �ese statements can use exception but this is not required.

5.3 �e Inner Object of Exceptions
Almost everything in Java is an object. So are Exceptions. Figure 3 depicts some of the Exception
hierarchy.

5.4 Creating New Exceptions
Creating a new kind of exception is done as usual: by extending the proper Exception (sub)class.

public class MotherOfAllExceptions extends Exception {
…

}

Java

5.5 Handling the Error
We’ve seen how to catch exceptions but we haven’t seen how to properly deal with the exception. Some

clues can be got by studying the exception class hierarchy in Figure 3. �e method printStackTrace(),

5

�rowable

getMessage()
printStackTrace()

Exception

IOException InterruptedException

Figure 3: Part of the Exception hierarchy.

which is de�ned in the Throwable class, prints a stack trace that leads up to the current method. �e

method getMessage() returns the details of the exception (this may be null). �e minimum you

arguably should do to handle the error is (1) output the name of the exception, (2) output the reason,

and (3) output the stacktrace. When dealing with exceptions, you should print all output System.err as

this is reserved for error messages.

In the following example the method risky() may throw two exceptions which are called MotherO-
fAllExceptions, and FatherOfAllExceptions. �ese are the only possible exceptions which the method

can throw. �e method safe catches each possible exception and handles it. Notice that it is possible to

distinguish between the di�erent possible exceptions: the �rst catch catches the MotherOfAllExceptions
exception, and the second catches the FatherOfAllExceptions exception.

6

public void handle(Exception exception) {
String cause = exception.getMessage();
if (cause != null) {

System.err.println(cause);
}
exception.printStackTrace();

}

public void safe() {
try {

risky();
} catch (MotherOfAllExceptions exception) {

handle(exception);
} catch (FatherOfAllExceptions exception) {

handle(exception);
}

}

Java

�e following gives an idea of the output.

$ java Risky
MotherOfAllExceptions

at Risky.risky(Risky.java:10)
at Risky.safe(Risky.java:26)
at Risky.main(Risky.java:4)

$

Unix Session

�e �rst line of the output is the value which is returned by the instance method getMessage(). In

this example this is just the name of the exception. Returning the name of the exception is the default

behaviour of the method getMessage() but it may be overridden. �e remaining lines are output by

the method printStackTrace().

�e last lines are especially useful if you have to debug an application.

Starting at the bottom, and leading to the top, the n-th line shows the n-th method which are on the

stack. So for this example, the method main() was called �rst, then safe(), and �nally risky().

For the bottom n− 1 lines, the number in parentheses is the line number of the method call. �e

remaining number is the line number that threw the exception. So for this example, safe() was called

at Line 4 in Risky.java, risky() was called at Line 26 in Risky.java, and the exception was thrown at

Line 10 in Risky.java.

5.6 �rowing Exceptions
We’ve learnt quite a bit about exceptions. We know you can throw them, catch them, or ignore them.

We even know how to catch them. It’s about time to learn how to throw them.

�e following demonstrates how to throw an exception. Methods which throw exceptions report all

7

thrown exceptions with a throwsdeclaration. Inside the method you throw a given exception with a throw
statement. Of course, you can only throw proper exception object references, which are constructed as

usual.

public void risky() throws MotherOfAllExceptions,
FatherOfAllExceptions {

if (allFails()) {
throw new MotherOfAllExceptions();

} else if (stillDesperate()) {
throw new FatherOfAllExceptions();

}
}

Java

5.7 Ignoring Exceptions
As already mentioned, it is allowed to ignore exceptions. �is is done by listing all uncaught exceptions

with a throws declaration. In the following example the method risky() may throw two possible

exceptions: MotherOfAllExceptions and FatherOfAllExceptions. �e former exception is caught but

the second isn’t. �erefore we list FatherOfAllExceptions in the throws declaration, which is written

a�er the closing parenthesis of the method’s argument list.

public void safeIsh() throws FatherOfAllExceptions {
try {

risky();
} catch (MotherOfAllExceptions exception) {

// Deal with it.
}

}

Java

In this example there is only one exception in the throws declaration. In the event of there being

several exceptions, they should all be listed in the throws declarations and commas should be used to

separate them.

5.8 Finally
�e last part of a try-catch block may contain an optional finally clause. It contains code which

should be done regardless of whether an exception occurs or not.

8

Oven oven = new Oven();
try {

oven.on();
Dish dish = new Dish();
dish.bake();

} catch (BakingException exception) {
exception.printStackTrace();

} finally {
oven.off();

}

Java

6 For Friday
Study the lecture notes, and study Pages 315–352 (Chapter 10, �rst half).

9

	Outline
	The Beat Box
	The Basics
	The Sequencer
	Exceptions
	Finding Risky Methods
	Catching Exceptions
	Exception Objects
	Creating New Exceptions
	Handling the Error
	Throwing Exceptions
	Ignoring Exceptions
	Finally

	For Friday

